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Abstract

The effect of the interaction between nanopore and chain segment on the translocation of polymer chains through an interacting nanopore
from a confined environment (cis side, high concentration of chain) to a spacious environment (trans side, zero concentration) was studied by
using dynamic Monte Carlo simulations. Results showed that a moderate attractive poreepolymer interaction accelerates the translocation of
chain. The optimal interaction at which translocation is the fastest increases with the concentration of chain on the cis side. The dependence
of microscopic behaviors of chain translocation on the interaction was investigated.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanism of polymers or macromolecules translocat-
ing through nanotubes or nanopores in membranes has at-
tracted a lot of attention from experiments [1e4], analytical
theories [5e12] and computer simulations [13e23]. The trans-
location of chain molecule is a fundamental event in various
biological processes, such as proteins transporting through
channels in biological membranes [24e26], RNA molecules
translocating through pores in cell nuclear membranes, DNA
molecules transferring from virus to host cell and genes trans-
ferring between bacteria [27]. It also relates to the migration of
DNAs through microfabricated channels and devices [28e32],
gene therapy, drug delivery, gel electrophoresis [33,34], and
size exclusion chromatography [35]. When the size of chain
molecule is larger than that of the cross section of nanopore,
the chain suffers a free energy barrier because it must lose
entropy in order to cross the nanopore. Polymer chains also
suffer similar free energy barrier in a restrictive environment
such as in a gel, in periodic gaps [36] or in random media
[37]. Because of the free energy barrier, most translocation
phenomena of chain require the aid of driving forces. A topic
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related to the translocation of chain through nanopore under
driving forces is interesting and important.

Nanopore without considering its thickness is easier to be
treated in theory and thus has attracted a lot of attention.
The translocation of polymer chain through a non-interacting
nanopore has been well studied by theory based on one-dimen-
sional driven-diffusion system [5,8]. The mechanism of chain
translocation was discussed based on the free energy barrier Fb

caused by nanopore and chemical potential difference Dm be-
tween cis and trans sides [5,8]. In these discussions Dm serves
as a driving force. Later, the translocation of polymer chain
driven by an electric field for a three-dimensional system
was simulated, and results showed that the behavior could
be described by one-dimensional Smoluchowski equation
with chain length independent diffusion constant [13]. The
chemical potential difference Dm can be set up by concentra-
tion difference, and it increases gradually with the increase of
the concentration difference [38]. The effect of concentration
difference on the translocation was also studied for chain con-
fined in a sphere [14]. Besides the chemical potential differ-
ence and electric field, the translocation can also be driven
by ratchet mechanism [6,39]. An attractive interaction on the
trans side of the membrane was recently demonstrated to be
a driving force for translocation. It was found that chain
worms through nanopore easily for the attractive interaction
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larger than an adsorption threshold, a critical point at which
chain goes from a ‘mushroom’ expanded state to a ‘pancake’
adsorbed state [15,16]. The influence of surface curvature near
the nanopore on the translocation of chain was also simulated
with off-lattice Monte Carlo technique [18].

However, the effect of interaction between nanopore and
polymer on the translocation is not clear. A Brownian dynamic
simulation study showed that the interaction affects the trans-
location time of chain but the details were not stated [11]. In
a recent simulation study on a charged polymer translocation
through a nanopore with finite length under the application
of an electric field, the interaction between polymer and
pore was taken into account [17]. The influence of charge
and field strength on the polymer translocation was discussed
but the influence of poreepolymer interaction was not men-
tioned. Some experiments also implied that the interaction
might play an important role on the translocation of chain
through small pore or narrow channel [1,2,40]. The present
work studies the effect of the poreepolymer interaction on
the translocation of chains from a high concentration region
(cis side) to zero concentration region (trans side). Therefore
the model system is not symmetrical for chains on the cis
and trans sides. The dependence of the translocation time on
the interaction is investigated. We find that the translocation
time exhibits a minimum as the attractive interaction is in-
creased. That is, a proper poreepolymer interaction can drive
chains through nanopores.

2. Model and simulation method

Our simulation system is embedded in the simple cubic
(SC) lattice. The simulated box is a cuboid with spacing Lx,
Ly and Lz in x, y and z directions, respectively. Periodic bound-
ary conditions (PBC) are considered in the x and y directions,
while in the z direction there are two infinitely large flat walls
located at z¼ 0 and Lzþ 1, respectively. The space between
these two impenetrable walls is called cis side and polymers
are confined on the cis side before translocation. A nanopore
is located at the center of the upper wall at z¼ Lzþ 1 through
which polymer chains can escape from the cis side. Above the
upper wall, there is an infinite large space and no chain in sim-
ulation. This half infinite space is called trans side. A sketch of
our model system is given in Fig. 1. The size of pore is only
one lattice site in the present simulations.

A polymer chain of length n is comprised of n self-avoiding
identical segments and each segment occupied one lattice site.
Bond length between two sequential segments equals the lat-
tice constant, which is set as the unit of length. The interaction
between segments and that between segment and surface are
supposed to be self-avoiding. We introduced a poreepolymer
interaction between the circum of pore and polymer segment
since the pore can be constructed by other materials in natural
or artificial membranes. An interaction E is assigned for every
nearest neighbor pair of polymer segment and circum of
pore, as shown in Fig. 1. The reduced interaction 3 ¼ E=kBT
is used in the work with kB the Boltzmann constant and T
the temperature.

The dynamics of polymer chains includes local and global
Brownian movements. The method was discussed in detail by
Gurler et al. [41] earlier and the simulation details can be
found in our recent papers [19,38,42]. The local movement
contains three elementary motions of segments: the end rota-
tion, 90� crankshaft rotation and kink jump motion. While
for global movement, slithering snake-like reptation is consid-
ered for two end segments: every attempted reptation leads the
whole chain to move one lattice forward or backward. For
every end segment, the probability for choosing reptation is
arbitrarily set to be 0.5. The trial move will be accepted
with a probability p ¼ minð1; e�DE=kBTÞ if the self-avoidance
is satisfied. Here DE is the energy change for each trial
move. By the local and global movements polymer chains
change their configurations as well as spatial locations.

At the beginning of every simulation run, we close the nano-
pore and put N identical chains of length n on the cis side. The
corresponding concentration C of chain is defined as volume
fraction of segment on the cis side before translocation, i.e.,
wall

hole

ba

wall

trans

cis

E

E

Fig. 1. Sketch of our simulation model: (a) side view: the upper wall with a nanopore at center separates the cis side and the trans side. Polymer, represented by

connected beads, can translocate through the pore. An interaction energy E is assigned to each nearest neighbor pair of polymer segment and circum of pore: (b)

top view: the structures of pore and the circumference of pore. The pore is marked by gray and the circum is marked with open circles.
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C ¼ Nn=V with V¼ Lx� Ly� Lz the total lattice sites in the cis
side. The time unit is one Monte Carlo step (MCS) during which
Nn trail movements are attempted. We assume the system
reaches equilibrium state after 10n2MCS Brownian movements
since it is much longer than the correlation time 0.25n2.13MCS
for single SAW chain in free space [33]. Then we open the pore
on the upper wall and monitor the translocation of chains
through the pore. The moment of opening the pore is set as
the starting time t¼ 0.

A certain time later, one of the chains reaches the pore and
several front segments of the chain worm out of the cis side by
randomly forth and back motion. But this step does not neces-
sarily lead to a successful escape; segments on the trans side
may be pulled back totally by an entropic force because the
chain is in an entropically unfavoured state when it enters
the nanopore [8]. After the trial escape the chain may go
back into the cis side again. Nevertheless, a final successful
escape occurs after several trial escapes.

We have monitored the motion of each chain on the cis
side. The moment we open the pore is set as t¼ 0. The elapsed
time from opening the pore to a first successful escape is
called the translocation time t. The whole translocation pro-
cess can be divided into two time scales: the elapsed time
for the final successful escape is named escaping time t2,
while that before the final successful escape is named relaxa-
tion time t1. Therefore we have

t¼ t1þ t2: ð1Þ

Specifically, during the escaping time t2 the chain successfully
worms through the pore without totally pulled back. The name
‘escaping time’ for t2 is followed the definition of Muthu-
kumar [14]. However, there are several different names for
t2 in literature, such as ‘residence time’ [8], ‘sliding time’
[18], and ‘translocation time’ [5].

To calculate the relaxation time t1 and the escaping time
t2, we monitor the number of segments out of the box, nout,
at every MC step. Fig. 2 presents the change of nout at different
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Fig. 2. The variation of the number of segments out of the box, nout, with time t

for a multi-chain system N¼ 50 with interaction 3¼ 0. Here t1 is the relaxa-

tion time and t2 is the escaping time. The inset presents one trial escape.
MC steps for a multi-chain system (N¼ 50) with interaction
3¼ 0. Here, nout¼ 0 means that the chain is on the cis side
while nout¼ n represents a successful escaping event. A pro-
cess with nonzero values of nout but less than n means a trial
escape. One can see several trial escapes in Fig. 2. During
the escaping time t2, we can see that nout increases from
0 to n which means a successful escape. The time before the
successful escaping event is recorded as the relaxation time t1.

Most simulations were carried out for a chain of length
n¼ 20 in a system with the cis side simulation box is
20� 20� 20 and the trans side is 20� 20� 50. That is
Lx¼ Ly¼ Lz¼ 20 is used. Here, the simulation space of the
trans side in z direction is always large enough to ensure no
boundary effect on the chain. Simulations for a longer chain
n¼ 50 give similar results. In this work, all data of the average
translocation time hti as well as average relaxation time ht1i
and the escaping time ht2i are averaged over at least 500
independent runs. We find that the standard statistical error
is less than 3%. In the following figures (except Figs. 4, 5,
and 7), the heights of error bars are of the similar sizes of sym-
bols. Therefore we do not include the error bars in these
figures.

3. Simulation results and discussion

The dependence of average translocation time hti on inter-
action 3 is presented in Fig. 3 for different numbers of chain on
the cis side. An interesting finding is that there exists a mini-
mum translocation time hti for an attractive pore. The interac-
tion at which hti is minimum is defined as optimal interaction
3o in this work. While for the interaction above 3 and below 3o,
hti increases roughly exponentially with the interaction 3,
indicating that the translocation of chain is very sensitive to
the interaction.

-3 -2 -1 0 1
102

103

104

105

106

107

108

109

1010

N

 1

 2
 10
 50
 150

<τ
>

ε

Fig. 3. The dependence of the average translocation time hti of one chain on

the interaction 3 for four situations with numbers of chain N¼ 1, 2, 10, 50 and

150, respectively. Chain length n¼ 20.
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The value of the optimal value 3o depends on the initial
chain number N as well as the chain length n. For example,
for chain length n¼ 20 the value 3o raises from �1.3 for
N¼ 1 to �0.9 for N¼ 150. While for N¼ 1, it raises from
�1.3 for n¼ 20 to �1.1 for n¼ 50. For chain length n¼ 20,
the dependence of 3o on concentration C is presented in
Fig. 4. Here the error of 3o is estimated as 0.05, half of the
minimum interval of the interaction in our calculations. We
find that 3o increases linearly with logarithm of C within the
error, that is, 3owlnC.

Probability distributions of translocation time t are counted
for non-interacting hole (3¼ 0), weak attractive hole
(0> 3> 3o), optimal interaction hole (3¼ 3o) and strong at-
tractive hole (3< 3o), respectively. Fig. 5 gives the probability
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Fig. 4. The dependence of the optimal interaction 3o on the concentration C of

polymer chain. These concentrations correspond to chain numbers N¼ 1, 2,

10, 50 and 150, respectively, with chain length n¼ 20. The straight line is

a guide for eyes.
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Fig. 5. The probability distribution of scaled translocation time P(x) with

xht=hti for chain length n¼ 20 at different interactions 3¼ 0, �0.8, �1.3

and �1.8. hti is average translocation time. The solid curve is an exponential

decay function and the dashed curve is a Logenormal distribution function.
distributions Pðxht=htiÞ for N¼ 1 and n¼ 20 at interactions
3¼ 0, �0.8, �1.3 and �1.8. Here the new variable xht=hti is
introduced for convenience. In the calculation, the interval of x
is 0.05. And the distributions P(x) are normalized to satisfyRN

0 PðxÞdx ¼ 1. For the first two cases (3¼ 0 and �0.8), the
distributions P(x) decrease exponentially with x as

PðxÞ ¼ expð � xÞ: ð2Þ

While at 3¼ 3o¼�1.3, the distribution is found to approach
a Logenormal distribution type as

PðxÞ ¼ 1ffiffiffiffiffiffi
2p
p

sx
exp

"
� ðlnx� aÞ2

2s2

#
ð3Þ

with a¼�0.23 and s¼ 0.87. Here a and s are parameters
determining the distribution. The distribution takes the maxi-
mum at x¼ exp(a� s2)¼ 0.36. Probability distributions
near 3o can also be roughly described by Logenormal
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Fig. 6. The dependence of average relaxation time ht1i (a) and average escap-

ing time ht2i (b) of one chain on the interaction 3 for system with different

chain numbers N¼ 1, 2, 10, 50, 100, and 150. Chain length n¼ 20.
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distributions with different sets of (a, s). For example,
a¼�0.28 and s¼ 1.1 can approximately describe the P(x)
curves at 3¼�1.1 and �1.7. With further increase of the
interaction strength to 3¼�1.8, the distribution roughly be-
comes PðxÞ ¼ expð�xÞ again with a slight deviation near
x¼ 0. We have also calculated probability distributions for
system with N¼ 50 and n¼ 20, and found the same results
as that for system with N¼ 1 and n¼ 20. Therefore, we con-
clude that the distributions of the translocation time t near and
away from 3o are different and can be easily distinguished.

The dependences of the average relaxation time ht1i and
the average escaping time ht2i on the interaction 3 are
presented in Fig. 6a and b, respectively. When N is small,
the behavior of ht1i is similar to that of the average transloca-
tion time hti, i.e. ht1i has a minimum at a moderate attractive
interaction near 3o. When N is large, ht1i is roughly a constant
at 3< 3o and it then increases with 3 at 3> 3o. However, the
behavior of ht2i is different. It is roughly a constant for
repulsive interaction but it increases gradually with the
increase of the attractive strength j3j.

For systems with few chains, e.g. N¼ 1 or 2, ht1i is much
bigger than ht2i for the interaction region we have studied. In
this case, chain spends long time on the cis side while the final
successful escape takes relatively short time. While for system
with many chains, e.g. N¼ 50, the whole translocation process
is dominated by the relaxation process of chain at 3> 3o, but it
is dominated by the final escaping process for strong attractive
pore with 3< 3o.

For a non-interacting pore, it was pointed out that the aver-
age escaping time ht2i of a chain through a pore is dominated
by chemical potential difference Dm between cis and trans
sides [5,8]. Based on nucleation theory, Muthukumar [8]
pointed out that the escaping time ht2i could be expressed as

ht2if
(
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Fig. 7. The variation of segment number out of the box, nout, with time t at different interactions 3 for two systems with chain numbers: (a) N¼ 1 and (b) N¼ 50.

Note different time scales for different interactions and chain lengths. Chain length n¼ 20.
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where k0 is a rate constant for transporting a segment across
the pore. In our system the chemical potential difference Dm

is determined by the concentration of polymer on the cis
side [38], so it is independent of the interaction. Since the es-
caping time ht2i is dependent on 3 (Fig. 6b), it therefore means
that the rate constant k0 in Eq. (4) is also dependent on 3. We
then propose that k0 decreases with the increase of the attrac-
tive strength j3j because ht2i increases with j3j for all attractive
holes.

In order to understand the different behaviors of chain at
different interactions, we have studied the microscopic behav-
ior of chain during the translocation. We have recorded the
variation of the number of segments out of the box, nout, for
different systems. The typical results for single chain system
(N¼ 1) and multi-chain system (N¼ 50) are presented in
Fig. 7 for three interactions: 3¼�1.5, �0.8 and 0.

Qualitatively, both systems show similar behavior. For
strong attractive interactions, e.g. 3¼�1.5, the chain finds
the pore easily but spends long time to eventually escape
from the pore. We can see that the chain repeatedly goes for-
ward and draws back near the pore because of strong attractive
interaction. For a moderate attractive interaction, e.g.
3¼�0.8, chain easily finds the pore and escapes from the
pore after a few trial finding events. For a non-interacting
pore 3¼ 0 or repulsive pores (not shown), chain spends long
time to find the pore and undergoes many trial escaping events
before the final escape. Quantitatively, there is a visible differ-
ence between these two systems for trial escapes: The value
nout can be very big for the N¼ 1 system but it is always small
for the N¼ 50 system. It is not strange because the system is
almost symmetrical for single chain, i.e., it is symmetrical for
the chain on both sides. But the symmetry is broken for the
multi-chain system. Therefore, value nout is always small
before the last successful escape for the N¼ 50 system. The
inter-chain interaction is clearly revealed.

One can see, from Fig. 7, that one translocation usually
contains several trail escapes before the last final escape.
Here, the average time elapse for the trial escape is named trial
escape time tesc and the average time interval between two
escapes is named finding time tfind. During the finding time
tfind one of chains finds the pore and tries to escape. The aver-
age relaxation time ht1i is constructed by all finding and trial
escaping processes, that is

ht1i ¼ Nfindtfind þ
�
Nfind � 1

�
tesc: ð5Þ

Here Nfind is the total finding events before the final successful
escape. The number of trial escapes is Nfind� 1 because the
last escape is the final successful escape. Each trial escape
here corresponds to a blockade of chain in the experiment of
DNA transport through a nanopore [6].

Fig. 8a gives the variation of tfind with interaction 3 for
systems of chain numbers N¼ 1 and 50, respectively. For
the single chain system, tfind increases gradually with 3. While
for the multi-chain system of N¼ 50, tfind remains roughly
constant when 3< 3o, and then increases with 3 when 3> 3o.
Fig. 8b presents the interaction dependence of tesc. The
average escape time tesc decreases with the increase of interac-
tion 3 for single and multi-chain systems, similar to the curve
of the average translocation time ht2i versus the interaction
(Fig. 6b). When 3 is close to zero, the average escape time
tesc is independent of initial chain number N, similar to the
behavior of ht2i at low concentration (Fig. 6b). A large value
of tesc for attractive pore means that chain spends long time for
transporting, indicating a small transporting rate k0 in Eq. (4).

Because of the different behaviors of tfind and tesc varying with
3, they will intersect at special interaction. We have checked the
cross point of curves tfind� 3 and tesc� 3 and found that the cross
point is very close to 3o. That is, tfind> tesc when 3> 3o but
tfind< tesc when 3< 3o. Therefore, one can see that the average
relaxation time ht1i ¼ Nfindtfind þ ðNfind � 1Þtesc is dominated
by tfind for weak attractive and repulsive pores (3> 3o) while it
is dominated by tesc for strong attractive pores (3< 3o).

Fig. 8c presents the dependence of the average finding events
Nfind on the interaction. For the single chain system, the curve is
similar to that of the total translocating time t: Nfind at first
decreases with the decrease of interaction, then increases
when the attraction is strong enough. For multi-chain system,
Nfind decreases gradually with the decrease of interaction 3.
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Based on classical nucleation theory, the average relaxation
time ht1i relates to two main factors: (1) the time interval for
chain finds the pore which is tfind in the simulation, and (2)
the energy barrier Fb of pore [14]. The value ht1i can then
be expressed as

ht1iftfind exp
�
Fb

�
: ð6Þ

The term expðFbÞ comes from the assumption that the chain
has the probability expð�FbÞ to overcome the barrier [14].
Fig. 9 presents the ratio ht1i=tfind for both single chain system
and multi-chain system. We find that the ratio ht1i=tfind has
a minimum at moderate attractive interaction. The results indi-
cate that the value expðFbÞ or the barrier Fb depends on the
poreepolymer interaction 3. However, the reason is not yet
clear now. The topic that how does Fb quantitatively depend
on the interaction will be further investigated by calculating
the interaction dependence of the free energy landscape.

4. Conclusion

We have investigated the translocation of polymer chains
through an interacting nanopore from a high concentration
region (cis side) to a zero concentration region (trans side)
by using dynamical Monte Carlo method. The size of chain
is much bigger than the size of cross section of pore thus
the chain suffers a free energy barrier when it crosses the
pore. The driving force for translocation is the concentration
difference between the cis side and trans side. The effect of
the poreepolymer interaction 3 ¼ E=kBT on the translocation
of polymer chains is studied. We find that a moderate attrac-
tive pore accelerates the translocation of chain. The minimum
of average total translocation time hti is located at optimal
interaction 3o w�1.3 for single chain system and 3o increases
linearly with the logarithm of concentration. Our main conclu-
sion is that a proper poreepolymer interaction can drive
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Fig. 9. The dependence of the ratio ht1i/tfind on the poreepolymer interaction 3

for both single chain system (N¼ 1) and multi-chain system (N¼ 50). Chain

length n¼ 20.
chains through nanopores from a high concentration region
to a low concentration region. We have also studied the distri-
bution of translocation time t. The distribution of t is a Loge
normal distribution function near 3o while it is an exponential
decay function away from 3o.

In this study, the key parameter is scaled interaction
3¼ E/kBT, which relates to the interaction E and temperature
T. Therefore, our results indicate that one can control the
translocation of polymer chain by varying the interaction E
or temperature T.

According to recent theoretical works, our results also indi-
cate that the transporting rate of chain through nanopore k0

and the free energy barrier Fb are dependent on the poree
polymer interaction 3. However, many questions remain
unanswered. Future work will focus on the physical under-
lying of how the chemical potential difference Dm and the
free energy barrier Fb depend on the interaction 3.
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